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Refined formulas for determination of the original function from its Laplace transform which is represented in
terms of Fourier series are given. For the cases where the asymptotic values of the function are known at
large values of the argument, the inversion formulas are written in the form of a rapidly converging series.
The results obtained are applied to solution of three-dimensional problems of nonstationary heat conduction.

I. We consider the problem of determination of the function f(t) on the basis of its known Laplace transform
F(s). Let d denote such a constant that the function F(s) is analytical when Re(s) > d. Then for 0 < t < l we have the
exact formula [1]

f (t) = 
1
l
 exp (ct ⁄ l)   ∑ 

n=−∞

∞

  F (sn) exp (2πnit ⁄ l) − R , (1)

where sn = (c + 2πni) ⁄ l; l and c are the constants which satisfy the conditions l > 0 and Re(c) > 0;

R =  ∑ 

n=1

∞

 exp (− nc) f (t + nl) . (2)

On neglect of the quantity R, relation (1) coincides with the known formula of an approximate inverse
Laplace transform which is based on the representation of the original by Fourier series [2].

Approximate account for the quantity R. The quantity R in formula (2) can approximately be determined in
the cases where an asymptotic expression for the function f(t) is known when t ] ∞. We denote the asymptotic value
of the function f(t) by f∞(t) when t ] ∞ and select l such that f(t) F f∞(t) when t > l. Then

R = A (t, l, c) + ε ,

where

A (t, l, c) =  ∑ 

n=1

∞

 exp (− nc) f∞ (t + nl) ,   ε =  ∑ 

n=1

∞

 exp (− nc) [f (t + nl) − f∞ (t + nl)] .

Here A is the known function. The quantity ε can also be made as small as is wished due to the parameters c and l.
Then, formula (1), where the quantity R is approximately replaced by A, holds for the Laplace transform.
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The series for determination of the function A can be summed up for many cases of practical importance. In
particular, when f∞ = const we obtain A = f∞ ⁄ (exp (c) − 1). In the more general case where f∞ = a + bt with a = const

and b = const, we find A F 
1

exp (c) − 1
 



f∞ + 

bl exp (c)
exp (c) − 1




. For the case of vibrational functions at f∞(t) = a exp (iωt) we

have A F 
exp (iωt)

exp (c − iωl) − 1
.

Improvement of series convergence. The series in formula (1) converges slowly, as a rule. We consider the

case where f(0), f ′(0), and ∫ 
0

∞

f ′′( t) exp (−st) dt exist and the first two quantities are known. Then, allowing for the as-

ymptotic transform F(sn) ] 
f(0)
sn

 + 
f ′(0)
sn
2  + ... for n ] 0, we can write relation (1) in terms of the rapidly converging se-

ries

f (t) = 
1
l
 exp (ct ⁄ l)   ∑ 

n=−∞

∞

  F
~

n exp (2πnit ⁄ l) + 
1

1 − exp (− c)
 

f (0) + lf ′ (0) 



t
l
 + 

1
exp (c) − 1







 − R , (3)

where F
~

n = Fn − 




f(0)
sn

 + 
f ′ (0)
sn
2



, with F

~
n = O(n−3) for n ] ∞.

If f(t) is a monotonically decreasing function and c is a real quantity, then in all the formulas presented the
error can be decreased by replacement of the constant c by c + πi. Then the estimate 0 < ε1 < exp (−c) [f∞ − f(t + l)] (for
c > 0) holds for the error of the approximate formula.

Sometimes the accuracy of the inversion formula can be improved considerably using the Runge rule. We
consider the case where the asymptotic value of f∞ = const is known and the function f(t) is monotonically increasing
(decreasing) for t > 1. We write formula (3) in the form

f (t) = S (t, c) − ε (t, c) . (4)

We set c1 = c0 and c2 = c0 + πi, where c0 is a certain real number (in the problems of heat conduction it was taken
that c0 F 2−4). Then, for determination of the original function the formula and the estimate of the upper and lower
bounds

f (t) C 0.5 [S (t, c1) + S (t, c2)] ,   S (t, c1) ≤ f (t) ≤ S (t, c2) . (5)

hold. According to the first formula of (5), the original function is found with an error of F O(exp (−2c)).

TABLE 1. Temperature Distribution in a Body with an Ellipsoidal Cavity Heated by an Internal Heat Source

θ 1 2 3

0.012 45.88932 0.06583092 1.136163
0.024 47.62981 0.1907055 1.865293
0.036 48.33032 0.3370603 2.259732
0.048 48.73237 0.4666032 2.514371
0.06 49.01385 0.5759680 2.696226

0.072 49.25160 0.6681260 2.834654
0.084 49.50851 0.7464820 2.944862
0.096 49.90291 0.8138161 3.035894
0.108 50.95706 0.872142 3.114854
0.12 85.58970 0.9226981 3.208557
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II. The above-given refined inversion formulas are efficient only in the case where additional a priori data on
the original function are known. In particular, these quantities can be found in the problems of heat conduction. By
virtue of this, we apply the results obtained to solution of the boundary-value problems of nonstationary heat conduc-
tion, i.e., we use the method of integral Laplace transformation with subsequent numerical inversion which is based on
the above-given formulas. To solve the resultant Helmholtz equations use is made of the method of boundary integral
equations [3].

We consider the problem of heat conduction for an infinite body with an ellipsoidal cavity which is heated
by a concentrated heat source located at the point (x0, y0, z0) in more detail. It is assumed that the temperature de-
creases at infinity, heat exchange between the cavity medium and the body occurs according to the Newton law, and
the temperature of the medium is zero at the initial instant of time.

Table 1 gives the distribution of the quantity aT ⁄ Q relative to θ = aτ for the case where the ellipsoid
semiaxes are r1 = 0.1, r2 = 0.15, r3 = 0.12, x0 = 0, y0 = 0, z0 = 0.17, α ⁄ λ = 1, and c = 2. The results for the points A(0,
0, r3), B(0, 0, −r3), and C(r1, r2, 0) are presented in columns 1, 2, and 3, respectively; ω is the frequency of vibra-
tions.

NOTATION

Q, intensity of the heat source; a, thermal diffusivity; λ, thermal conductivity; τ, time; T, temperature; α,
heat-transfer coefficient; θ, variable; ω, frequency of vibrations.
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